1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
6 * The library is free for all purposes without any express
9 * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
16 static const uint64_t K[80] = {
17 UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
18 UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
19 UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
20 UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
21 UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
22 UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
23 UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
24 UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
25 UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
26 UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
27 UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
28 UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
29 UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
30 UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
31 UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
32 UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
33 UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
34 UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
35 UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
36 UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
37 UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
38 UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
39 UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
40 UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
41 UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
42 UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
43 UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
44 UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
45 UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
46 UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
47 UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
48 UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
49 UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
50 UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
51 UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
52 UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
53 UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
54 UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
55 UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
56 UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817)
59 /* Various logical functions */
61 #define ROR64c(x, y) \
62 ( ((((x)&UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)(y)&UINT64_C(63))) | \
63 ((x)<<((uint64_t)(64-((y)&UINT64_C(63)))))) & UINT64_C(0xFFFFFFFFFFFFFFFF))
65 #define STORE64H(x, y) \
66 { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
67 (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
68 (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
69 (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
71 #define LOAD64H(x, y) \
72 { x = (((uint64_t)((y)[0] & 255))<<56)|(((uint64_t)((y)[1] & 255))<<48) | \
73 (((uint64_t)((y)[2] & 255))<<40)|(((uint64_t)((y)[3] & 255))<<32) | \
74 (((uint64_t)((y)[4] & 255))<<24)|(((uint64_t)((y)[5] & 255))<<16) | \
75 (((uint64_t)((y)[6] & 255))<<8)|(((uint64_t)((y)[7] & 255))); }
77 #define Ch(x,y,z) (z ^ (x & (y ^ z)))
78 #define Maj(x,y,z) (((x | y) & z) | (x & y))
79 #define S(x, n) ROR64c(x, n)
80 #define R(x, n) (((x) &UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)n))
81 #define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39))
82 #define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41))
83 #define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7))
84 #define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6))
86 #define MIN(x, y) ( ((x)<(y))?(x):(y) )
89 /* compress 1024-bits */
90 static int sha512_compress(sha512_context *md, const unsigned char *buf)
92 uint64_t S[8], W[80], t0, t1;
95 /* copy state into S */
96 for (i = 0; i < 8; i++) {
100 /* copy the state into 1024-bits into W[0..15] */
101 for (i = 0; i < 16; i++) {
102 LOAD64H(W[i], buf + (8 * i));
106 for (i = 16; i < 80; i++) {
108 Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
112 #define RND(a,b,c,d,e,f,g,h,i) \
113 t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
114 t1 = Sigma0(a) + Maj(a, b, c);\
118 for (i = 0; i < 80; i += 8) {
119 RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i + 0);
120 RND(S[7], S[0], S[1], S[2], S[3], S[4], S[5], S[6], i + 1);
121 RND(S[6], S[7], S[0], S[1], S[2], S[3], S[4], S[5], i + 2);
122 RND(S[5], S[6], S[7], S[0], S[1], S[2], S[3], S[4], i + 3);
123 RND(S[4], S[5], S[6], S[7], S[0], S[1], S[2], S[3], i + 4);
124 RND(S[3], S[4], S[5], S[6], S[7], S[0], S[1], S[2], i + 5);
125 RND(S[2], S[3], S[4], S[5], S[6], S[7], S[0], S[1], i + 6);
126 RND(S[1], S[2], S[3], S[4], S[5], S[6], S[7], S[0], i + 7);
132 for (i = 0; i < 8; i++) {
133 md->state[i] = md->state[i] + S[i];
140 Initialize the hash state
141 @param md The hash state you wish to initialize
142 @return 0 if successful
144 int sha512_init(sha512_context *md)
151 md->state[0] = UINT64_C(0x6a09e667f3bcc908);
152 md->state[1] = UINT64_C(0xbb67ae8584caa73b);
153 md->state[2] = UINT64_C(0x3c6ef372fe94f82b);
154 md->state[3] = UINT64_C(0xa54ff53a5f1d36f1);
155 md->state[4] = UINT64_C(0x510e527fade682d1);
156 md->state[5] = UINT64_C(0x9b05688c2b3e6c1f);
157 md->state[6] = UINT64_C(0x1f83d9abfb41bd6b);
158 md->state[7] = UINT64_C(0x5be0cd19137e2179);
164 Process a block of memory though the hash
165 @param md The hash state
166 @param in The data to hash
167 @param inlen The length of the data (octets)
168 @return 0 if successful
170 int sha512_update(sha512_context *md, const void *vin, size_t inlen)
172 const unsigned char *in = vin;
180 if (md->curlen > sizeof(md->buf)) {
184 if (md->curlen == 0 && inlen >= 128) {
185 if ((err = sha512_compress(md, in)) != 0) {
188 md->length += 128 * 8;
192 n = MIN(inlen, (128 - md->curlen));
194 for (i = 0; i < n; i++) {
195 md->buf[i + md->curlen] = in[i];
201 if (md->curlen == 128) {
202 if ((err = sha512_compress(md, md->buf)) != 0) {
205 md->length += 8 * 128;
214 Terminate the hash to get the digest
215 @param md The hash state
216 @param out [out] The destination of the hash (64 bytes)
217 @return 0 if successful
219 int sha512_final(sha512_context *md, void *vout)
221 unsigned char *out = vout;
229 if (md->curlen >= sizeof(md->buf)) {
233 /* increase the length of the message */
234 md->length += md->curlen * UINT64_C(8);
236 /* append the '1' bit */
237 md->buf[md->curlen++] = 0x80;
239 /* if the length is currently above 112 bytes we append zeros
240 * then compress. Then we can fall back to padding zeros and length
241 * encoding like normal.
243 if (md->curlen > 112) {
244 while (md->curlen < 128) {
245 md->buf[md->curlen++] = 0;
247 sha512_compress(md, md->buf);
251 /* pad upto 120 bytes of zeroes
252 * note: that from 112 to 120 is the 64 MSB of the length. We assume that you won't hash
253 * > 2^64 bits of data... :-)
255 while (md->curlen < 120) {
256 md->buf[md->curlen++] = 0;
260 STORE64H(md->length, md->buf + 120);
261 sha512_compress(md, md->buf);
264 for (i = 0; i < 8; i++) {
265 STORE64H(md->state[i], out + (8 * i));
271 int sha512(const void *message, size_t message_len, void *out)
275 if ((ret = sha512_init(&ctx)))
277 if ((ret = sha512_update(&ctx, message, message_len)))
279 if ((ret = sha512_final(&ctx, out)))