]> git.meshlink.io Git - utcp/blob - utcp.c
Fix potential segmentation fault when the receive callback is not set.
[utcp] / utcp.c
1 /*
2     utcp.c -- Userspace TCP
3     Copyright (C) 2014-2017 Guus Sliepen <guus@tinc-vpn.org>
4
5     This program is free software; you can redistribute it and/or modify
6     it under the terms of the GNU General Public License as published by
7     the Free Software Foundation; either version 2 of the License, or
8     (at your option) any later version.
9
10     This program is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13     GNU General Public License for more details.
14
15     You should have received a copy of the GNU General Public License along
16     with this program; if not, write to the Free Software Foundation, Inc.,
17     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21
22 #include <assert.h>
23 #include <errno.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <stdint.h>
27 #include <stdbool.h>
28 #include <string.h>
29 #include <unistd.h>
30 #include <time.h>
31
32 #include "utcp_priv.h"
33
34 #ifndef EBADMSG
35 #define EBADMSG         104
36 #endif
37
38 #ifndef SHUT_RDWR
39 #define SHUT_RDWR 2
40 #endif
41
42 #ifdef poll
43 #undef poll
44 #endif
45
46 #ifndef UTCP_CLOCK
47 #if defined(CLOCK_MONOTONIC_RAW) && defined(__x86_64__)
48 #define UTCP_CLOCK CLOCK_MONOTONIC_RAW
49 #else
50 #define UTCP_CLOCK CLOCK_MONOTONIC
51 #endif
52 #endif
53
54 static void timespec_sub(const struct timespec *a, const struct timespec *b, struct timespec *r) {
55         r->tv_sec = a->tv_sec - b->tv_sec;
56         r->tv_nsec = a->tv_nsec - b->tv_nsec;
57
58         if(r->tv_nsec < 0) {
59                 r->tv_sec--, r->tv_nsec += NSEC_PER_SEC;
60         }
61 }
62
63 static int32_t timespec_diff_usec(const struct timespec *a, const struct timespec *b) {
64         return (a->tv_sec - b->tv_sec) * 1000000 + (a->tv_nsec - b->tv_nsec) / 1000;
65 }
66
67 static bool timespec_lt(const struct timespec *a, const struct timespec *b) {
68         if(a->tv_sec == b->tv_sec) {
69                 return a->tv_nsec < b->tv_nsec;
70         } else {
71                 return a->tv_sec < b->tv_sec;
72         }
73 }
74
75 static void timespec_clear(struct timespec *a) {
76         a->tv_sec = 0;
77         a->tv_nsec = 0;
78 }
79
80 static bool timespec_isset(const struct timespec *a) {
81         return a->tv_sec;
82 }
83
84 static long CLOCK_GRANULARITY; // usec
85
86 static inline size_t min(size_t a, size_t b) {
87         return a < b ? a : b;
88 }
89
90 static inline size_t max(size_t a, size_t b) {
91         return a > b ? a : b;
92 }
93
94 #ifdef UTCP_DEBUG
95 #include <stdarg.h>
96
97 #ifndef UTCP_DEBUG_DATALEN
98 #define UTCP_DEBUG_DATALEN 20
99 #endif
100
101 static void debug(struct utcp_connection *c, const char *format, ...) {
102         struct timespec tv;
103         char buf[1024];
104         int len;
105
106         clock_gettime(CLOCK_REALTIME, &tv);
107         len = snprintf(buf, sizeof(buf), "%ld.%06lu %u:%u ", (long)tv.tv_sec, tv.tv_nsec / 1000, c ? c->src : 0, c ? c->dst : 0);
108         va_list ap;
109         va_start(ap, format);
110         len += vsnprintf(buf + len, sizeof(buf) - len, format, ap);
111         va_end(ap);
112
113         if(len > 0 && (size_t)len < sizeof(buf)) {
114                 fwrite(buf, len, 1, stderr);
115         }
116 }
117
118 static void print_packet(struct utcp_connection *c, const char *dir, const void *pkt, size_t len) {
119         struct hdr hdr;
120
121         if(len < sizeof(hdr)) {
122                 debug(c, "%s: short packet (%lu bytes)\n", dir, (unsigned long)len);
123                 return;
124         }
125
126         memcpy(&hdr, pkt, sizeof(hdr));
127
128         uint32_t datalen;
129
130         if(len > sizeof(hdr)) {
131                 datalen = min(len - sizeof(hdr), UTCP_DEBUG_DATALEN);
132         } else {
133                 datalen = 0;
134         }
135
136
137         const uint8_t *data = (uint8_t *)pkt + sizeof(hdr);
138         char str[datalen * 2 + 1];
139         char *p = str;
140
141         for(uint32_t i = 0; i < datalen; i++) {
142                 *p++ = "0123456789ABCDEF"[data[i] >> 4];
143                 *p++ = "0123456789ABCDEF"[data[i] & 15];
144         }
145
146         *p = 0;
147
148         debug(c, "%s: len %lu src %u dst %u seq %u ack %u wnd %u aux %x ctl %s%s%s%s%s data %s\n",
149               dir, (unsigned long)len, hdr.src, hdr.dst, hdr.seq, hdr.ack, hdr.wnd, hdr.aux,
150               hdr.ctl & SYN ? "SYN" : "",
151               hdr.ctl & RST ? "RST" : "",
152               hdr.ctl & FIN ? "FIN" : "",
153               hdr.ctl & ACK ? "ACK" : "",
154               hdr.ctl & MF ? "MF" : "",
155               str
156              );
157 }
158
159 static void debug_cwnd(struct utcp_connection *c) {
160         debug(c, "snd.cwnd %u snd.ssthresh %u\n", c->snd.cwnd, ~c->snd.ssthresh ? c->snd.ssthresh : 0);
161 }
162 #else
163 #define debug(...) do {} while(0)
164 #define print_packet(...) do {} while(0)
165 #define debug_cwnd(...) do {} while(0)
166 #endif
167
168 static void set_state(struct utcp_connection *c, enum state state) {
169         c->state = state;
170
171         if(state == ESTABLISHED) {
172                 timespec_clear(&c->conn_timeout);
173         }
174
175         debug(c, "state %s\n", strstate[state]);
176 }
177
178 static bool fin_wanted(struct utcp_connection *c, uint32_t seq) {
179         if(seq != c->snd.last) {
180                 return false;
181         }
182
183         switch(c->state) {
184         case FIN_WAIT_1:
185         case CLOSING:
186         case LAST_ACK:
187                 return true;
188
189         default:
190                 return false;
191         }
192 }
193
194 static bool is_reliable(struct utcp_connection *c) {
195         return c->flags & UTCP_RELIABLE;
196 }
197
198 static int32_t seqdiff(uint32_t a, uint32_t b) {
199         return a - b;
200 }
201
202 // Buffer functions
203 static bool buffer_wraps(struct buffer *buf) {
204         return buf->size - buf->offset < buf->used;
205 }
206
207 static bool buffer_resize(struct buffer *buf, uint32_t newsize) {
208         char *newdata = realloc(buf->data, newsize);
209
210         if(!newdata) {
211                 return false;
212         }
213
214         buf->data = newdata;
215
216         if(buffer_wraps(buf)) {
217                 // Shift the right part of the buffer until it hits the end of the new buffer.
218                 // Old situation:
219                 // [345......012]
220                 // New situation:
221                 // [345.........|........012]
222                 uint32_t tailsize = buf->size - buf->offset;
223                 uint32_t newoffset = newsize - tailsize;
224                 memmove(buf->data + newoffset, buf->data + buf->offset, tailsize);
225                 buf->offset = newoffset;
226         }
227
228         buf->size = newsize;
229         return true;
230 }
231
232 // Store data into the buffer
233 static ssize_t buffer_put_at(struct buffer *buf, size_t offset, const void *data, size_t len) {
234         debug(NULL, "buffer_put_at %lu %lu %lu\n", (unsigned long)buf->used, (unsigned long)offset, (unsigned long)len);
235
236         // Ensure we don't store more than maxsize bytes in total
237         size_t required = offset + len;
238
239         if(required > buf->maxsize) {
240                 if(offset >= buf->maxsize) {
241                         return 0;
242                 }
243
244                 len = buf->maxsize - offset;
245                 required = buf->maxsize;
246         }
247
248         // Check if we need to resize the buffer
249         if(required > buf->size) {
250                 size_t newsize = buf->size;
251
252                 if(!newsize) {
253                         newsize = 4096;
254                 }
255
256                 do {
257                         newsize *= 2;
258                 } while(newsize < required);
259
260                 if(newsize > buf->maxsize) {
261                         newsize = buf->maxsize;
262                 }
263
264                 if(!buffer_resize(buf, newsize)) {
265                         return -1;
266                 }
267         }
268
269         uint32_t realoffset = buf->offset + offset;
270
271         if(buf->size - buf->offset < offset) {
272                 // The offset wrapped
273                 realoffset -= buf->size;
274         }
275
276         if(buf->size - realoffset < len) {
277                 // The new chunk of data must be wrapped
278                 memcpy(buf->data + realoffset, data, buf->size - realoffset);
279                 memcpy(buf->data, (char *)data + buf->size - realoffset, len - (buf->size - realoffset));
280         } else {
281                 memcpy(buf->data + realoffset, data, len);
282         }
283
284         if(required > buf->used) {
285                 buf->used = required;
286         }
287
288         return len;
289 }
290
291 static ssize_t buffer_put(struct buffer *buf, const void *data, size_t len) {
292         return buffer_put_at(buf, buf->used, data, len);
293 }
294
295 // Copy data from the buffer without removing it.
296 static ssize_t buffer_copy(struct buffer *buf, void *data, size_t offset, size_t len) {
297         // Ensure we don't copy more than is actually stored in the buffer
298         if(offset >= buf->used) {
299                 return 0;
300         }
301
302         if(buf->used - offset < len) {
303                 len = buf->used - offset;
304         }
305
306         uint32_t realoffset = buf->offset + offset;
307
308         if(buf->size - buf->offset < offset) {
309                 // The offset wrapped
310                 realoffset -= buf->size;
311         }
312
313         if(buf->size - realoffset < len) {
314                 // The data is wrapped
315                 memcpy(data, buf->data + realoffset, buf->size - realoffset);
316                 memcpy((char *)data + buf->size - realoffset, buf->data, len - (buf->size - realoffset));
317         } else {
318                 memcpy(data, buf->data + realoffset, len);
319         }
320
321         return len;
322 }
323
324 // Copy data from the buffer without removing it.
325 static ssize_t buffer_call(struct buffer *buf, utcp_recv_t cb, void *arg, size_t offset, size_t len) {
326         // Ensure we don't copy more than is actually stored in the buffer
327         if(offset >= buf->used) {
328                 return 0;
329         }
330
331         if(buf->used - offset < len) {
332                 len = buf->used - offset;
333         }
334
335         uint32_t realoffset = buf->offset + offset;
336
337         if(buf->size - buf->offset < offset) {
338                 // The offset wrapped
339                 realoffset -= buf->size;
340         }
341
342         if(buf->size - realoffset < len) {
343                 // The data is wrapped
344                 ssize_t rx1 = cb(arg, buf->data + realoffset, buf->size - realoffset);
345
346                 if(rx1 < buf->size - realoffset) {
347                         return rx1;
348                 }
349
350                 ssize_t rx2 = cb(arg, buf->data, len - (buf->size - realoffset));
351
352                 if(rx2 < 0) {
353                         return rx2;
354                 } else {
355                         return rx1 + rx2;
356                 }
357         } else {
358                 return cb(arg, buf->data + realoffset, len);
359         }
360 }
361
362 // Discard data from the buffer.
363 static ssize_t buffer_discard(struct buffer *buf, size_t len) {
364         if(buf->used < len) {
365                 len = buf->used;
366         }
367
368         if(buf->size - buf->offset < len) {
369                 buf->offset -= buf->size;
370         }
371
372         if(buf->used == len) {
373                 buf->offset = 0;
374         } else {
375                 buf->offset += len;
376         }
377
378         buf->used -= len;
379
380         return len;
381 }
382
383 static void buffer_clear(struct buffer *buf) {
384         buf->used = 0;
385         buf->offset = 0;
386 }
387
388 static bool buffer_set_size(struct buffer *buf, uint32_t minsize, uint32_t maxsize) {
389         if(maxsize < minsize) {
390                 maxsize = minsize;
391         }
392
393         buf->maxsize = maxsize;
394
395         return buf->size >= minsize || buffer_resize(buf, minsize);
396 }
397
398 static void buffer_exit(struct buffer *buf) {
399         free(buf->data);
400         memset(buf, 0, sizeof(*buf));
401 }
402
403 static uint32_t buffer_free(const struct buffer *buf) {
404         return buf->maxsize > buf->used ? buf->maxsize - buf->used : 0;
405 }
406
407 // Connections are stored in a sorted list.
408 // This gives O(log(N)) lookup time, O(N log(N)) insertion time and O(N) deletion time.
409
410 static int compare(const void *va, const void *vb) {
411         assert(va && vb);
412
413         const struct utcp_connection *a = *(struct utcp_connection **)va;
414         const struct utcp_connection *b = *(struct utcp_connection **)vb;
415
416         assert(a && b);
417         assert(a->src && b->src);
418
419         int c = (int)a->src - (int)b->src;
420
421         if(c) {
422                 return c;
423         }
424
425         c = (int)a->dst - (int)b->dst;
426         return c;
427 }
428
429 static struct utcp_connection *find_connection(const struct utcp *utcp, uint16_t src, uint16_t dst) {
430         if(!utcp->nconnections) {
431                 return NULL;
432         }
433
434         struct utcp_connection key = {
435                 .src = src,
436                 .dst = dst,
437         }, *keyp = &key;
438         struct utcp_connection **match = bsearch(&keyp, utcp->connections, utcp->nconnections, sizeof(*utcp->connections), compare);
439         return match ? *match : NULL;
440 }
441
442 static void free_connection(struct utcp_connection *c) {
443         struct utcp *utcp = c->utcp;
444         struct utcp_connection **cp = bsearch(&c, utcp->connections, utcp->nconnections, sizeof(*utcp->connections), compare);
445
446         assert(cp);
447
448         int i = cp - utcp->connections;
449         memmove(cp, cp + 1, (utcp->nconnections - i - 1) * sizeof(*cp));
450         utcp->nconnections--;
451
452         buffer_exit(&c->rcvbuf);
453         buffer_exit(&c->sndbuf);
454         free(c);
455 }
456
457 static struct utcp_connection *allocate_connection(struct utcp *utcp, uint16_t src, uint16_t dst) {
458         // Check whether this combination of src and dst is free
459
460         if(src) {
461                 if(find_connection(utcp, src, dst)) {
462                         errno = EADDRINUSE;
463                         return NULL;
464                 }
465         } else { // If src == 0, generate a random port number with the high bit set
466                 if(utcp->nconnections >= 32767) {
467                         errno = ENOMEM;
468                         return NULL;
469                 }
470
471                 src = rand() | 0x8000;
472
473                 while(find_connection(utcp, src, dst)) {
474                         src++;
475                 }
476         }
477
478         // Allocate memory for the new connection
479
480         if(utcp->nconnections >= utcp->nallocated) {
481                 if(!utcp->nallocated) {
482                         utcp->nallocated = 4;
483                 } else {
484                         utcp->nallocated *= 2;
485                 }
486
487                 struct utcp_connection **new_array = realloc(utcp->connections, utcp->nallocated * sizeof(*utcp->connections));
488
489                 if(!new_array) {
490                         return NULL;
491                 }
492
493                 utcp->connections = new_array;
494         }
495
496         struct utcp_connection *c = calloc(1, sizeof(*c));
497
498         if(!c) {
499                 return NULL;
500         }
501
502         if(!buffer_set_size(&c->sndbuf, DEFAULT_SNDBUFSIZE, DEFAULT_MAXSNDBUFSIZE)) {
503                 free(c);
504                 return NULL;
505         }
506
507         if(!buffer_set_size(&c->rcvbuf, DEFAULT_RCVBUFSIZE, DEFAULT_MAXRCVBUFSIZE)) {
508                 buffer_exit(&c->sndbuf);
509                 free(c);
510                 return NULL;
511         }
512
513         // Fill in the details
514
515         c->src = src;
516         c->dst = dst;
517 #ifdef UTCP_DEBUG
518         c->snd.iss = 0;
519 #else
520         c->snd.iss = rand();
521 #endif
522         c->snd.una = c->snd.iss;
523         c->snd.nxt = c->snd.iss + 1;
524         c->snd.last = c->snd.nxt;
525         c->snd.cwnd = (utcp->mss > 2190 ? 2 : utcp->mss > 1095 ? 3 : 4) * utcp->mss;
526         c->snd.ssthresh = ~0;
527         debug_cwnd(c);
528         c->srtt = 0;
529         c->rttvar = 0;
530         c->rto = START_RTO;
531         c->utcp = utcp;
532
533         // Add it to the sorted list of connections
534
535         utcp->connections[utcp->nconnections++] = c;
536         qsort(utcp->connections, utcp->nconnections, sizeof(*utcp->connections), compare);
537
538         return c;
539 }
540
541 static inline uint32_t absdiff(uint32_t a, uint32_t b) {
542         if(a > b) {
543                 return a - b;
544         } else {
545                 return b - a;
546         }
547 }
548
549 // Update RTT variables. See RFC 6298.
550 static void update_rtt(struct utcp_connection *c, uint32_t rtt) {
551         if(!rtt) {
552                 debug(c, "invalid rtt\n");
553                 return;
554         }
555
556         if(!c->srtt) {
557                 c->srtt = rtt;
558                 c->rttvar = rtt / 2;
559         } else {
560                 c->rttvar = (c->rttvar * 3 + absdiff(c->srtt, rtt)) / 4;
561                 c->srtt = (c->srtt * 7 + rtt) / 8;
562         }
563
564         c->rto = c->srtt + max(4 * c->rttvar, CLOCK_GRANULARITY);
565
566         if(c->rto > MAX_RTO) {
567                 c->rto = MAX_RTO;
568         }
569
570         debug(c, "rtt %u srtt %u rttvar %u rto %u\n", rtt, c->srtt, c->rttvar, c->rto);
571 }
572
573 static void start_retransmit_timer(struct utcp_connection *c) {
574         clock_gettime(UTCP_CLOCK, &c->rtrx_timeout);
575
576         uint32_t rto = c->rto;
577
578         while(rto > USEC_PER_SEC) {
579                 c->rtrx_timeout.tv_sec++;
580                 rto -= USEC_PER_SEC;
581         }
582
583         c->rtrx_timeout.tv_nsec += rto * 1000;
584
585         if(c->rtrx_timeout.tv_nsec >= NSEC_PER_SEC) {
586                 c->rtrx_timeout.tv_nsec -= NSEC_PER_SEC;
587                 c->rtrx_timeout.tv_sec++;
588         }
589
590         debug(c, "rtrx_timeout %ld.%06lu\n", c->rtrx_timeout.tv_sec, c->rtrx_timeout.tv_nsec);
591 }
592
593 static void stop_retransmit_timer(struct utcp_connection *c) {
594         timespec_clear(&c->rtrx_timeout);
595         debug(c, "rtrx_timeout cleared\n");
596 }
597
598 struct utcp_connection *utcp_connect_ex(struct utcp *utcp, uint16_t dst, utcp_recv_t recv, void *priv, uint32_t flags) {
599         struct utcp_connection *c = allocate_connection(utcp, 0, dst);
600
601         if(!c) {
602                 return NULL;
603         }
604
605         assert((flags & ~0x1f) == 0);
606
607         c->flags = flags;
608         c->recv = recv;
609         c->priv = priv;
610
611         struct {
612                 struct hdr hdr;
613                 uint8_t init[4];
614         } pkt;
615
616         pkt.hdr.src = c->src;
617         pkt.hdr.dst = c->dst;
618         pkt.hdr.seq = c->snd.iss;
619         pkt.hdr.ack = 0;
620         pkt.hdr.wnd = c->rcvbuf.maxsize;
621         pkt.hdr.ctl = SYN;
622         pkt.hdr.aux = 0x0101;
623         pkt.init[0] = 1;
624         pkt.init[1] = 0;
625         pkt.init[2] = 0;
626         pkt.init[3] = flags & 0x7;
627
628         set_state(c, SYN_SENT);
629
630         print_packet(c, "send", &pkt, sizeof(pkt));
631         utcp->send(utcp, &pkt, sizeof(pkt));
632
633         clock_gettime(UTCP_CLOCK, &c->conn_timeout);
634         c->conn_timeout.tv_sec += utcp->timeout;
635
636         start_retransmit_timer(c);
637
638         return c;
639 }
640
641 struct utcp_connection *utcp_connect(struct utcp *utcp, uint16_t dst, utcp_recv_t recv, void *priv) {
642         return utcp_connect_ex(utcp, dst, recv, priv, UTCP_TCP);
643 }
644
645 void utcp_accept(struct utcp_connection *c, utcp_recv_t recv, void *priv) {
646         if(c->reapable || c->state != SYN_RECEIVED) {
647                 debug(c, "accept() called on invalid connection in state %s\n", c, strstate[c->state]);
648                 return;
649         }
650
651         debug(c, "accepted %p %p\n", c, recv, priv);
652         c->recv = recv;
653         c->priv = priv;
654         set_state(c, ESTABLISHED);
655 }
656
657 static void ack(struct utcp_connection *c, bool sendatleastone) {
658         int32_t left = seqdiff(c->snd.last, c->snd.nxt);
659         int32_t cwndleft = is_reliable(c) ? min(c->snd.cwnd, c->snd.wnd) - seqdiff(c->snd.nxt, c->snd.una) : MAX_UNRELIABLE_SIZE;
660
661         assert(left >= 0);
662
663         if(cwndleft <= 0) {
664                 left = 0;
665         } else if(cwndleft < left) {
666                 left = cwndleft;
667
668                 if(!sendatleastone || cwndleft > c->utcp->mss) {
669                         left -= left % c->utcp->mss;
670                 }
671         }
672
673         debug(c, "cwndleft %d left %d\n", cwndleft, left);
674
675         if(!left && !sendatleastone) {
676                 return;
677         }
678
679         struct {
680                 struct hdr hdr;
681                 uint8_t data[];
682         } *pkt = c->utcp->pkt;
683
684         pkt->hdr.src = c->src;
685         pkt->hdr.dst = c->dst;
686         pkt->hdr.ack = c->rcv.nxt;
687         pkt->hdr.wnd = is_reliable(c) ? c->rcvbuf.maxsize : 0;
688         pkt->hdr.ctl = ACK;
689         pkt->hdr.aux = 0;
690
691         do {
692                 uint32_t seglen = left > c->utcp->mss ? c->utcp->mss : left;
693                 pkt->hdr.seq = c->snd.nxt;
694
695                 buffer_copy(&c->sndbuf, pkt->data, seqdiff(c->snd.nxt, c->snd.una), seglen);
696
697                 c->snd.nxt += seglen;
698                 left -= seglen;
699
700                 if(!is_reliable(c)) {
701                         if(left) {
702                                 pkt->hdr.ctl |= MF;
703                         } else {
704                                 pkt->hdr.ctl &= ~MF;
705                         }
706                 }
707
708                 if(seglen && fin_wanted(c, c->snd.nxt)) {
709                         seglen--;
710                         pkt->hdr.ctl |= FIN;
711                 }
712
713                 if(!c->rtt_start.tv_sec) {
714                         // Start RTT measurement
715                         clock_gettime(UTCP_CLOCK, &c->rtt_start);
716                         c->rtt_seq = pkt->hdr.seq + seglen;
717                         debug(c, "starting RTT measurement, expecting ack %u\n", c->rtt_seq);
718                 }
719
720                 print_packet(c, "send", pkt, sizeof(pkt->hdr) + seglen);
721                 c->utcp->send(c->utcp, pkt, sizeof(pkt->hdr) + seglen);
722
723                 if(left && !is_reliable(c)) {
724                         pkt->hdr.wnd += seglen;
725                 }
726         } while(left);
727 }
728
729 ssize_t utcp_send(struct utcp_connection *c, const void *data, size_t len) {
730         if(c->reapable) {
731                 debug(c, "send() called on closed connection\n");
732                 errno = EBADF;
733                 return -1;
734         }
735
736         switch(c->state) {
737         case CLOSED:
738         case LISTEN:
739                 debug(c, "send() called on unconnected connection\n");
740                 errno = ENOTCONN;
741                 return -1;
742
743         case SYN_SENT:
744         case SYN_RECEIVED:
745         case ESTABLISHED:
746         case CLOSE_WAIT:
747                 break;
748
749         case FIN_WAIT_1:
750         case FIN_WAIT_2:
751         case CLOSING:
752         case LAST_ACK:
753         case TIME_WAIT:
754                 debug(c, "send() called on closed connection\n");
755                 errno = EPIPE;
756                 return -1;
757         }
758
759         // Exit early if we have nothing to send.
760
761         if(!len) {
762                 return 0;
763         }
764
765         if(!data) {
766                 errno = EFAULT;
767                 return -1;
768         }
769
770         // Check if we need to be able to buffer all data
771
772         if(c->flags & UTCP_NO_PARTIAL) {
773                 if(len > buffer_free(&c->sndbuf)) {
774                         if(len > c->sndbuf.maxsize) {
775                                 errno = EMSGSIZE;
776                                 return -1;
777                         } else {
778                                 errno = EWOULDBLOCK;
779                                 return 0;
780                         }
781                 }
782         }
783
784         // Add data to send buffer.
785
786         if(is_reliable(c)) {
787                 len = buffer_put(&c->sndbuf, data, len);
788         } else if(c->state != SYN_SENT && c->state != SYN_RECEIVED) {
789                 if(len > MAX_UNRELIABLE_SIZE || buffer_put(&c->sndbuf, data, len) != (ssize_t)len) {
790                         errno = EMSGSIZE;
791                         return -1;
792                 }
793         } else {
794                 return 0;
795         }
796
797         if(len <= 0) {
798                 if(is_reliable(c)) {
799                         errno = EWOULDBLOCK;
800                         return 0;
801                 } else {
802                         return len;
803                 }
804         }
805
806         c->snd.last += len;
807
808         // Don't send anything yet if the connection has not fully established yet
809
810         if(c->state == SYN_SENT || c->state == SYN_RECEIVED) {
811                 return len;
812         }
813
814         ack(c, false);
815
816         if(!is_reliable(c)) {
817                 c->snd.una = c->snd.nxt = c->snd.last;
818                 buffer_discard(&c->sndbuf, c->sndbuf.used);
819         }
820
821         if(is_reliable(c) && !timespec_isset(&c->rtrx_timeout)) {
822                 start_retransmit_timer(c);
823         }
824
825         if(is_reliable(c) && !timespec_isset(&c->conn_timeout)) {
826                 clock_gettime(UTCP_CLOCK, &c->conn_timeout);
827                 c->conn_timeout.tv_sec += c->utcp->timeout;
828         }
829
830         return len;
831 }
832
833 static void swap_ports(struct hdr *hdr) {
834         uint16_t tmp = hdr->src;
835         hdr->src = hdr->dst;
836         hdr->dst = tmp;
837 }
838
839 static void fast_retransmit(struct utcp_connection *c) {
840         if(c->state == CLOSED || c->snd.last == c->snd.una) {
841                 debug(c, "fast_retransmit() called but nothing to retransmit!\n");
842                 return;
843         }
844
845         struct utcp *utcp = c->utcp;
846
847         struct {
848                 struct hdr hdr;
849                 uint8_t data[];
850         } *pkt;
851
852         pkt = malloc(c->utcp->mtu);
853
854         if(!pkt) {
855                 return;
856         }
857
858         pkt->hdr.src = c->src;
859         pkt->hdr.dst = c->dst;
860         pkt->hdr.wnd = c->rcvbuf.maxsize;
861         pkt->hdr.aux = 0;
862
863         switch(c->state) {
864         case ESTABLISHED:
865         case FIN_WAIT_1:
866         case CLOSE_WAIT:
867         case CLOSING:
868         case LAST_ACK:
869                 // Send unacked data again.
870                 pkt->hdr.seq = c->snd.una;
871                 pkt->hdr.ack = c->rcv.nxt;
872                 pkt->hdr.ctl = ACK;
873                 uint32_t len = min(seqdiff(c->snd.last, c->snd.una), utcp->mss);
874
875                 if(fin_wanted(c, c->snd.una + len)) {
876                         len--;
877                         pkt->hdr.ctl |= FIN;
878                 }
879
880                 buffer_copy(&c->sndbuf, pkt->data, 0, len);
881                 print_packet(c, "rtrx", pkt, sizeof(pkt->hdr) + len);
882                 utcp->send(utcp, pkt, sizeof(pkt->hdr) + len);
883                 break;
884
885         default:
886                 break;
887         }
888
889         free(pkt);
890 }
891
892 static void retransmit(struct utcp_connection *c) {
893         if(c->state == CLOSED || c->snd.last == c->snd.una) {
894                 debug(c, "retransmit() called but nothing to retransmit!\n");
895                 stop_retransmit_timer(c);
896                 return;
897         }
898
899         struct utcp *utcp = c->utcp;
900
901         struct {
902                 struct hdr hdr;
903                 uint8_t data[];
904         } *pkt = c->utcp->pkt;
905
906         pkt->hdr.src = c->src;
907         pkt->hdr.dst = c->dst;
908         pkt->hdr.wnd = c->rcvbuf.maxsize;
909         pkt->hdr.aux = 0;
910
911         switch(c->state) {
912         case SYN_SENT:
913                 // Send our SYN again
914                 pkt->hdr.seq = c->snd.iss;
915                 pkt->hdr.ack = 0;
916                 pkt->hdr.ctl = SYN;
917                 pkt->hdr.aux = 0x0101;
918                 pkt->data[0] = 1;
919                 pkt->data[1] = 0;
920                 pkt->data[2] = 0;
921                 pkt->data[3] = c->flags & 0x7;
922                 print_packet(c, "rtrx", pkt, sizeof(pkt->hdr) + 4);
923                 utcp->send(utcp, pkt, sizeof(pkt->hdr) + 4);
924                 break;
925
926         case SYN_RECEIVED:
927                 // Send SYNACK again
928                 pkt->hdr.seq = c->snd.nxt;
929                 pkt->hdr.ack = c->rcv.nxt;
930                 pkt->hdr.ctl = SYN | ACK;
931                 print_packet(c, "rtrx", pkt, sizeof(pkt->hdr));
932                 utcp->send(utcp, pkt, sizeof(pkt->hdr));
933                 break;
934
935         case ESTABLISHED:
936         case FIN_WAIT_1:
937         case CLOSE_WAIT:
938         case CLOSING:
939         case LAST_ACK:
940                 // Send unacked data again.
941                 pkt->hdr.seq = c->snd.una;
942                 pkt->hdr.ack = c->rcv.nxt;
943                 pkt->hdr.ctl = ACK;
944                 uint32_t len = min(seqdiff(c->snd.last, c->snd.una), utcp->mss);
945
946                 if(fin_wanted(c, c->snd.una + len)) {
947                         len--;
948                         pkt->hdr.ctl |= FIN;
949                 }
950
951                 // RFC 5681 slow start after timeout
952                 uint32_t flightsize = seqdiff(c->snd.nxt, c->snd.una);
953                 c->snd.ssthresh = max(flightsize / 2, utcp->mss * 2); // eq. 4
954                 c->snd.cwnd = utcp->mss;
955                 debug_cwnd(c);
956
957                 buffer_copy(&c->sndbuf, pkt->data, 0, len);
958                 print_packet(c, "rtrx", pkt, sizeof(pkt->hdr) + len);
959                 utcp->send(utcp, pkt, sizeof(pkt->hdr) + len);
960
961                 c->snd.nxt = c->snd.una + len;
962                 break;
963
964         case CLOSED:
965         case LISTEN:
966         case TIME_WAIT:
967         case FIN_WAIT_2:
968                 // We shouldn't need to retransmit anything in this state.
969 #ifdef UTCP_DEBUG
970                 abort();
971 #endif
972                 stop_retransmit_timer(c);
973                 goto cleanup;
974         }
975
976         start_retransmit_timer(c);
977         c->rto *= 2;
978
979         if(c->rto > MAX_RTO) {
980                 c->rto = MAX_RTO;
981         }
982
983         c->rtt_start.tv_sec = 0; // invalidate RTT timer
984         c->dupack = 0; // cancel any ongoing fast recovery
985
986 cleanup:
987         return;
988 }
989
990 /* Update receive buffer and SACK entries after consuming data.
991  *
992  * Situation:
993  *
994  * |.....0000..1111111111.....22222......3333|
995  * |---------------^
996  *
997  * 0..3 represent the SACK entries. The ^ indicates up to which point we want
998  * to remove data from the receive buffer. The idea is to substract "len"
999  * from the offset of all the SACK entries, and then remove/cut down entries
1000  * that are shifted to before the start of the receive buffer.
1001  *
1002  * There are three cases:
1003  * - the SACK entry is after ^, in that case just change the offset.
1004  * - the SACK entry starts before and ends after ^, so we have to
1005  *   change both its offset and size.
1006  * - the SACK entry is completely before ^, in that case delete it.
1007  */
1008 static void sack_consume(struct utcp_connection *c, size_t len) {
1009         debug(c, "sack_consume %lu\n", (unsigned long)len);
1010
1011         if(len > c->rcvbuf.used) {
1012                 debug(c, "all SACK entries consumed\n");
1013                 c->sacks[0].len = 0;
1014                 return;
1015         }
1016
1017         buffer_discard(&c->rcvbuf, len);
1018
1019         for(int i = 0; i < NSACKS && c->sacks[i].len;) {
1020                 if(len < c->sacks[i].offset) {
1021                         c->sacks[i].offset -= len;
1022                         i++;
1023                 } else if(len < c->sacks[i].offset + c->sacks[i].len) {
1024                         c->sacks[i].len -= len - c->sacks[i].offset;
1025                         c->sacks[i].offset = 0;
1026                         i++;
1027                 } else {
1028                         if(i < NSACKS - 1) {
1029                                 memmove(&c->sacks[i], &c->sacks[i + 1], (NSACKS - 1 - i) * sizeof(c->sacks)[i]);
1030                                 c->sacks[NSACKS - 1].len = 0;
1031                         } else {
1032                                 c->sacks[i].len = 0;
1033                                 break;
1034                         }
1035                 }
1036         }
1037
1038         for(int i = 0; i < NSACKS && c->sacks[i].len; i++) {
1039                 debug(c, "SACK[%d] offset %u len %u\n", i, c->sacks[i].offset, c->sacks[i].len);
1040         }
1041 }
1042
1043 static void handle_out_of_order(struct utcp_connection *c, uint32_t offset, const void *data, size_t len) {
1044         debug(c, "out of order packet, offset %u\n", offset);
1045         // Packet loss or reordering occured. Store the data in the buffer.
1046         ssize_t rxd = buffer_put_at(&c->rcvbuf, offset, data, len);
1047
1048         if(rxd <= 0) {
1049                 debug(c, "packet outside receive buffer, dropping\n");
1050                 return;
1051         }
1052
1053         if((size_t)rxd < len) {
1054                 debug(c, "packet partially outside receive buffer\n");
1055                 len = rxd;
1056         }
1057
1058         // Make note of where we put it.
1059         for(int i = 0; i < NSACKS; i++) {
1060                 if(!c->sacks[i].len) { // nothing to merge, add new entry
1061                         debug(c, "new SACK entry %d\n", i);
1062                         c->sacks[i].offset = offset;
1063                         c->sacks[i].len = rxd;
1064                         break;
1065                 } else if(offset < c->sacks[i].offset) {
1066                         if(offset + rxd < c->sacks[i].offset) { // insert before
1067                                 if(!c->sacks[NSACKS - 1].len) { // only if room left
1068                                         debug(c, "insert SACK entry at %d\n", i);
1069                                         memmove(&c->sacks[i + 1], &c->sacks[i], (NSACKS - i - 1) * sizeof(c->sacks)[i]);
1070                                         c->sacks[i].offset = offset;
1071                                         c->sacks[i].len = rxd;
1072                                 } else {
1073                                         debug(c, "SACK entries full, dropping packet\n");
1074                                 }
1075
1076                                 break;
1077                         } else { // merge
1078                                 debug(c, "merge with start of SACK entry at %d\n", i);
1079                                 c->sacks[i].offset = offset;
1080                                 break;
1081                         }
1082                 } else if(offset <= c->sacks[i].offset + c->sacks[i].len) {
1083                         if(offset + rxd > c->sacks[i].offset + c->sacks[i].len) { // merge
1084                                 debug(c, "merge with end of SACK entry at %d\n", i);
1085                                 c->sacks[i].len = offset + rxd - c->sacks[i].offset;
1086                                 // TODO: handle potential merge with next entry
1087                         }
1088
1089                         break;
1090                 }
1091         }
1092
1093         for(int i = 0; i < NSACKS && c->sacks[i].len; i++) {
1094                 debug(c, "SACK[%d] offset %u len %u\n", i, c->sacks[i].offset, c->sacks[i].len);
1095         }
1096 }
1097
1098 static void handle_in_order(struct utcp_connection *c, const void *data, size_t len) {
1099         if(c->recv) {
1100                 ssize_t rxd = c->recv(c, data, len);
1101
1102                 if(rxd != (ssize_t)len) {
1103                         // TODO: handle the application not accepting all data.
1104                         abort();
1105                 }
1106         }
1107
1108         // Check if we can process out-of-order data now.
1109         if(c->sacks[0].len && len >= c->sacks[0].offset) {
1110                 debug(c, "incoming packet len %lu connected with SACK at %u\n", (unsigned long)len, c->sacks[0].offset);
1111
1112                 if(len < c->sacks[0].offset + c->sacks[0].len) {
1113                         size_t offset = len;
1114                         len = c->sacks[0].offset + c->sacks[0].len;
1115                         size_t remainder = len - offset;
1116
1117                         if(c->recv) {
1118                                 ssize_t rxd = buffer_call(&c->rcvbuf, c->recv, c, offset, remainder);
1119
1120                                 if(rxd != (ssize_t)remainder) {
1121                                         // TODO: handle the application not accepting all data.
1122                                         abort();
1123                                 }
1124                         }
1125                 }
1126         }
1127
1128         if(c->rcvbuf.used) {
1129                 sack_consume(c, len);
1130         }
1131
1132         c->rcv.nxt += len;
1133 }
1134
1135 static void handle_unreliable(struct utcp_connection *c, const struct hdr *hdr, const void *data, size_t len) {
1136         // Fast path for unfragmented packets
1137         if(!hdr->wnd && !(hdr->ctl & MF)) {
1138                 if(c->recv) {
1139                         c->recv(c, data, len);
1140                 }
1141
1142                 c->rcv.nxt = hdr->seq + len;
1143                 return;
1144         }
1145
1146         // Ensure reassembled packet are not larger than 64 kiB
1147         if(hdr->wnd >= MAX_UNRELIABLE_SIZE || hdr->wnd + len > MAX_UNRELIABLE_SIZE) {
1148                 return;
1149         }
1150
1151         // Don't accept out of order fragments
1152         if(hdr->wnd && hdr->seq != c->rcv.nxt) {
1153                 return;
1154         }
1155
1156         // Reset the receive buffer for the first fragment
1157         if(!hdr->wnd) {
1158                 buffer_clear(&c->rcvbuf);
1159         }
1160
1161         ssize_t rxd = buffer_put_at(&c->rcvbuf, hdr->wnd, data, len);
1162
1163         if(rxd != (ssize_t)len) {
1164                 return;
1165         }
1166
1167         // Send the packet if it's the final fragment
1168         if(!(hdr->ctl & MF) && c->recv) {
1169                 buffer_call(&c->rcvbuf, c->recv, c, 0, hdr->wnd + len);
1170         }
1171
1172         c->rcv.nxt = hdr->seq + len;
1173 }
1174
1175 static void handle_incoming_data(struct utcp_connection *c, const struct hdr *hdr, const void *data, size_t len) {
1176         if(!is_reliable(c)) {
1177                 handle_unreliable(c, hdr, data, len);
1178                 return;
1179         }
1180
1181         uint32_t offset = seqdiff(hdr->seq, c->rcv.nxt);
1182
1183         if(offset) {
1184                 handle_out_of_order(c, offset, data, len);
1185         } else {
1186                 handle_in_order(c, data, len);
1187         }
1188 }
1189
1190
1191 ssize_t utcp_recv(struct utcp *utcp, const void *data, size_t len) {
1192         const uint8_t *ptr = data;
1193
1194         if(!utcp) {
1195                 errno = EFAULT;
1196                 return -1;
1197         }
1198
1199         if(!len) {
1200                 return 0;
1201         }
1202
1203         if(!data) {
1204                 errno = EFAULT;
1205                 return -1;
1206         }
1207
1208         // Drop packets smaller than the header
1209
1210         struct hdr hdr;
1211
1212         if(len < sizeof(hdr)) {
1213                 print_packet(NULL, "recv", data, len);
1214                 errno = EBADMSG;
1215                 return -1;
1216         }
1217
1218         // Make a copy from the potentially unaligned data to a struct hdr
1219
1220         memcpy(&hdr, ptr, sizeof(hdr));
1221
1222         // Try to match the packet to an existing connection
1223
1224         struct utcp_connection *c = find_connection(utcp, hdr.dst, hdr.src);
1225         print_packet(c, "recv", data, len);
1226
1227         // Process the header
1228
1229         ptr += sizeof(hdr);
1230         len -= sizeof(hdr);
1231
1232         // Drop packets with an unknown CTL flag
1233
1234         if(hdr.ctl & ~(SYN | ACK | RST | FIN | MF)) {
1235                 print_packet(NULL, "recv", data, len);
1236                 errno = EBADMSG;
1237                 return -1;
1238         }
1239
1240         // Check for auxiliary headers
1241
1242         const uint8_t *init = NULL;
1243
1244         uint16_t aux = hdr.aux;
1245
1246         while(aux) {
1247                 size_t auxlen = 4 * (aux >> 8) & 0xf;
1248                 uint8_t auxtype = aux & 0xff;
1249
1250                 if(len < auxlen) {
1251                         errno = EBADMSG;
1252                         return -1;
1253                 }
1254
1255                 switch(auxtype) {
1256                 case AUX_INIT:
1257                         if(!(hdr.ctl & SYN) || auxlen != 4) {
1258                                 errno = EBADMSG;
1259                                 return -1;
1260                         }
1261
1262                         init = ptr;
1263                         break;
1264
1265                 default:
1266                         errno = EBADMSG;
1267                         return -1;
1268                 }
1269
1270                 len -= auxlen;
1271                 ptr += auxlen;
1272
1273                 if(!(aux & 0x800)) {
1274                         break;
1275                 }
1276
1277                 if(len < 2) {
1278                         errno = EBADMSG;
1279                         return -1;
1280                 }
1281
1282                 memcpy(&aux, ptr, 2);
1283                 len -= 2;
1284                 ptr += 2;
1285         }
1286
1287         bool has_data = len || (hdr.ctl & (SYN | FIN));
1288
1289         // Is it for a new connection?
1290
1291         if(!c) {
1292                 // Ignore RST packets
1293
1294                 if(hdr.ctl & RST) {
1295                         return 0;
1296                 }
1297
1298                 // Is it a SYN packet and are we LISTENing?
1299
1300                 if(hdr.ctl & SYN && !(hdr.ctl & ACK) && utcp->accept) {
1301                         // If we don't want to accept it, send a RST back
1302                         if((utcp->pre_accept && !utcp->pre_accept(utcp, hdr.dst))) {
1303                                 len = 1;
1304                                 goto reset;
1305                         }
1306
1307                         // Try to allocate memory, otherwise send a RST back
1308                         c = allocate_connection(utcp, hdr.dst, hdr.src);
1309
1310                         if(!c) {
1311                                 len = 1;
1312                                 goto reset;
1313                         }
1314
1315                         // Parse auxilliary information
1316                         if(init) {
1317                                 if(init[0] < 1) {
1318                                         len = 1;
1319                                         goto reset;
1320                                 }
1321
1322                                 c->flags = init[3] & 0x7;
1323                         } else {
1324                                 c->flags = UTCP_TCP;
1325                         }
1326
1327 synack:
1328                         // Return SYN+ACK, go to SYN_RECEIVED state
1329                         c->snd.wnd = hdr.wnd;
1330                         c->rcv.irs = hdr.seq;
1331                         c->rcv.nxt = c->rcv.irs + 1;
1332                         set_state(c, SYN_RECEIVED);
1333
1334                         struct {
1335                                 struct hdr hdr;
1336                                 uint8_t data[4];
1337                         } pkt;
1338
1339                         pkt.hdr.src = c->src;
1340                         pkt.hdr.dst = c->dst;
1341                         pkt.hdr.ack = c->rcv.irs + 1;
1342                         pkt.hdr.seq = c->snd.iss;
1343                         pkt.hdr.wnd = c->rcvbuf.maxsize;
1344                         pkt.hdr.ctl = SYN | ACK;
1345
1346                         if(init) {
1347                                 pkt.hdr.aux = 0x0101;
1348                                 pkt.data[0] = 1;
1349                                 pkt.data[1] = 0;
1350                                 pkt.data[2] = 0;
1351                                 pkt.data[3] = c->flags & 0x7;
1352                                 print_packet(c, "send", &pkt, sizeof(hdr) + 4);
1353                                 utcp->send(utcp, &pkt, sizeof(hdr) + 4);
1354                         } else {
1355                                 pkt.hdr.aux = 0;
1356                                 print_packet(c, "send", &pkt, sizeof(hdr));
1357                                 utcp->send(utcp, &pkt, sizeof(hdr));
1358                         }
1359                 } else {
1360                         // No, we don't want your packets, send a RST back
1361                         len = 1;
1362                         goto reset;
1363                 }
1364
1365                 return 0;
1366         }
1367
1368         debug(c, "state %s\n", strstate[c->state]);
1369
1370         // In case this is for a CLOSED connection, ignore the packet.
1371         // TODO: make it so incoming packets can never match a CLOSED connection.
1372
1373         if(c->state == CLOSED) {
1374                 debug(c, "got packet for closed connection\n");
1375                 return 0;
1376         }
1377
1378         // It is for an existing connection.
1379
1380         // 1. Drop invalid packets.
1381
1382         // 1a. Drop packets that should not happen in our current state.
1383
1384         switch(c->state) {
1385         case SYN_SENT:
1386         case SYN_RECEIVED:
1387         case ESTABLISHED:
1388         case FIN_WAIT_1:
1389         case FIN_WAIT_2:
1390         case CLOSE_WAIT:
1391         case CLOSING:
1392         case LAST_ACK:
1393         case TIME_WAIT:
1394                 break;
1395
1396         default:
1397 #ifdef UTCP_DEBUG
1398                 abort();
1399 #endif
1400                 break;
1401         }
1402
1403         // 1b. Discard data that is not in our receive window.
1404
1405         if(is_reliable(c)) {
1406                 bool acceptable;
1407
1408                 if(c->state == SYN_SENT) {
1409                         acceptable = true;
1410                 } else if(len == 0) {
1411                         acceptable = seqdiff(hdr.seq, c->rcv.nxt) >= 0;
1412                 } else {
1413                         int32_t rcv_offset = seqdiff(hdr.seq, c->rcv.nxt);
1414
1415                         // cut already accepted front overlapping
1416                         if(rcv_offset < 0) {
1417                                 acceptable = len > (size_t) - rcv_offset;
1418
1419                                 if(acceptable) {
1420                                         ptr -= rcv_offset;
1421                                         len += rcv_offset;
1422                                         hdr.seq -= rcv_offset;
1423                                 }
1424                         } else {
1425                                 acceptable = seqdiff(hdr.seq, c->rcv.nxt) >= 0 && seqdiff(hdr.seq, c->rcv.nxt) + len <= c->rcvbuf.maxsize;
1426                         }
1427                 }
1428
1429                 if(!acceptable) {
1430                         debug(c, "packet not acceptable, %u <= %u + %lu < %u\n", c->rcv.nxt, hdr.seq, (unsigned long)len, c->rcv.nxt + c->rcvbuf.maxsize);
1431
1432                         // Ignore unacceptable RST packets.
1433                         if(hdr.ctl & RST) {
1434                                 return 0;
1435                         }
1436
1437                         // Otherwise, continue processing.
1438                         len = 0;
1439                 }
1440         } else {
1441 #if UTCP_DEBUG
1442                 int32_t rcv_offset = seqdiff(hdr.seq, c->rcv.nxt);
1443
1444                 if(rcv_offset) {
1445                         debug(c, "packet out of order, offset %u bytes", rcv_offset);
1446                 }
1447
1448 #endif
1449         }
1450
1451         c->snd.wnd = hdr.wnd; // TODO: move below
1452
1453         // 1c. Drop packets with an invalid ACK.
1454         // ackno should not roll back, and it should also not be bigger than what we ever could have sent
1455         // (= snd.una + c->sndbuf.used).
1456
1457         if(!is_reliable(c)) {
1458                 if(hdr.ack != c->snd.last && c->state >= ESTABLISHED) {
1459                         hdr.ack = c->snd.una;
1460                 }
1461         }
1462
1463         if(hdr.ctl & ACK && (seqdiff(hdr.ack, c->snd.last) > 0 || seqdiff(hdr.ack, c->snd.una) < 0)) {
1464                 debug(c, "packet ack seqno out of range, %u <= %u < %u\n", c->snd.una, hdr.ack, c->snd.una + c->sndbuf.used);
1465
1466                 // Ignore unacceptable RST packets.
1467                 if(hdr.ctl & RST) {
1468                         return 0;
1469                 }
1470
1471                 goto reset;
1472         }
1473
1474         // 2. Handle RST packets
1475
1476         if(hdr.ctl & RST) {
1477                 switch(c->state) {
1478                 case SYN_SENT:
1479                         if(!(hdr.ctl & ACK)) {
1480                                 return 0;
1481                         }
1482
1483                         // The peer has refused our connection.
1484                         set_state(c, CLOSED);
1485                         errno = ECONNREFUSED;
1486
1487                         if(c->recv) {
1488                                 c->recv(c, NULL, 0);
1489                         }
1490
1491                         if(c->poll && !c->reapable) {
1492                                 c->poll(c, 0);
1493                         }
1494
1495                         return 0;
1496
1497                 case SYN_RECEIVED:
1498                         if(hdr.ctl & ACK) {
1499                                 return 0;
1500                         }
1501
1502                         // We haven't told the application about this connection yet. Silently delete.
1503                         free_connection(c);
1504                         return 0;
1505
1506                 case ESTABLISHED:
1507                 case FIN_WAIT_1:
1508                 case FIN_WAIT_2:
1509                 case CLOSE_WAIT:
1510                         if(hdr.ctl & ACK) {
1511                                 return 0;
1512                         }
1513
1514                         // The peer has aborted our connection.
1515                         set_state(c, CLOSED);
1516                         errno = ECONNRESET;
1517
1518                         if(c->recv) {
1519                                 c->recv(c, NULL, 0);
1520                         }
1521
1522                         if(c->poll && !c->reapable) {
1523                                 c->poll(c, 0);
1524                         }
1525
1526                         return 0;
1527
1528                 case CLOSING:
1529                 case LAST_ACK:
1530                 case TIME_WAIT:
1531                         if(hdr.ctl & ACK) {
1532                                 return 0;
1533                         }
1534
1535                         // As far as the application is concerned, the connection has already been closed.
1536                         // If it has called utcp_close() already, we can immediately free this connection.
1537                         if(c->reapable) {
1538                                 free_connection(c);
1539                                 return 0;
1540                         }
1541
1542                         // Otherwise, immediately move to the CLOSED state.
1543                         set_state(c, CLOSED);
1544                         return 0;
1545
1546                 default:
1547 #ifdef UTCP_DEBUG
1548                         abort();
1549 #endif
1550                         break;
1551                 }
1552         }
1553
1554         uint32_t advanced;
1555
1556         if(!(hdr.ctl & ACK)) {
1557                 advanced = 0;
1558                 goto skip_ack;
1559         }
1560
1561         // 3. Advance snd.una
1562
1563         advanced = seqdiff(hdr.ack, c->snd.una);
1564
1565         if(advanced) {
1566                 // RTT measurement
1567                 if(c->rtt_start.tv_sec) {
1568                         if(c->rtt_seq == hdr.ack) {
1569                                 struct timespec now;
1570                                 clock_gettime(UTCP_CLOCK, &now);
1571                                 int32_t diff = timespec_diff_usec(&now, &c->rtt_start);
1572                                 update_rtt(c, diff);
1573                                 c->rtt_start.tv_sec = 0;
1574                         } else if(c->rtt_seq < hdr.ack) {
1575                                 debug(c, "cancelling RTT measurement: %u < %u\n", c->rtt_seq, hdr.ack);
1576                                 c->rtt_start.tv_sec = 0;
1577                         }
1578                 }
1579
1580                 int32_t data_acked = advanced;
1581
1582                 switch(c->state) {
1583                 case SYN_SENT:
1584                 case SYN_RECEIVED:
1585                         data_acked--;
1586                         break;
1587
1588                 // TODO: handle FIN as well.
1589                 default:
1590                         break;
1591                 }
1592
1593                 assert(data_acked >= 0);
1594
1595 #ifndef NDEBUG
1596                 int32_t bufused = seqdiff(c->snd.last, c->snd.una);
1597                 assert(data_acked <= bufused);
1598 #endif
1599
1600                 if(data_acked) {
1601                         buffer_discard(&c->sndbuf, data_acked);
1602
1603                         if(is_reliable(c)) {
1604                                 c->do_poll = true;
1605                         }
1606                 }
1607
1608                 // Also advance snd.nxt if possible
1609                 if(seqdiff(c->snd.nxt, hdr.ack) < 0) {
1610                         c->snd.nxt = hdr.ack;
1611                 }
1612
1613                 c->snd.una = hdr.ack;
1614
1615                 if(c->dupack) {
1616                         if(c->dupack >= 3) {
1617                                 debug(c, "fast recovery ended\n");
1618                                 c->snd.cwnd = c->snd.ssthresh;
1619                         }
1620
1621                         c->dupack = 0;
1622                 }
1623
1624                 // Increase the congestion window according to RFC 5681
1625                 if(c->snd.cwnd < c->snd.ssthresh) {
1626                         c->snd.cwnd += min(advanced, utcp->mss); // eq. 2
1627                 } else {
1628                         c->snd.cwnd += max(1, (utcp->mss * utcp->mss) / c->snd.cwnd); // eq. 3
1629                 }
1630
1631                 if(c->snd.cwnd > c->sndbuf.maxsize) {
1632                         c->snd.cwnd = c->sndbuf.maxsize;
1633                 }
1634
1635                 debug_cwnd(c);
1636
1637                 // Check if we have sent a FIN that is now ACKed.
1638                 switch(c->state) {
1639                 case FIN_WAIT_1:
1640                         if(c->snd.una == c->snd.last) {
1641                                 set_state(c, FIN_WAIT_2);
1642                         }
1643
1644                         break;
1645
1646                 case CLOSING:
1647                         if(c->snd.una == c->snd.last) {
1648                                 clock_gettime(UTCP_CLOCK, &c->conn_timeout);
1649                                 c->conn_timeout.tv_sec += utcp->timeout;
1650                                 set_state(c, TIME_WAIT);
1651                         }
1652
1653                         break;
1654
1655                 default:
1656                         break;
1657                 }
1658         } else {
1659                 if(!len && is_reliable(c) && c->snd.una != c->snd.last) {
1660                         c->dupack++;
1661                         debug(c, "duplicate ACK %d\n", c->dupack);
1662
1663                         if(c->dupack == 3) {
1664                                 // RFC 5681 fast recovery
1665                                 debug(c, "fast recovery started\n", c->dupack);
1666                                 uint32_t flightsize = seqdiff(c->snd.nxt, c->snd.una);
1667                                 c->snd.ssthresh = max(flightsize / 2, utcp->mss * 2); // eq. 4
1668                                 c->snd.cwnd = min(c->snd.ssthresh + 3 * utcp->mss, c->sndbuf.maxsize);
1669
1670                                 if(c->snd.cwnd > c->sndbuf.maxsize) {
1671                                         c->snd.cwnd = c->sndbuf.maxsize;
1672                                 }
1673
1674                                 debug_cwnd(c);
1675
1676                                 fast_retransmit(c);
1677                         } else if(c->dupack > 3) {
1678                                 c->snd.cwnd += utcp->mss;
1679
1680                                 if(c->snd.cwnd > c->sndbuf.maxsize) {
1681                                         c->snd.cwnd = c->sndbuf.maxsize;
1682                                 }
1683
1684                                 debug_cwnd(c);
1685                         }
1686
1687                         // We got an ACK which indicates the other side did get one of our packets.
1688                         // Reset the retransmission timer to avoid going to slow start,
1689                         // but don't touch the connection timeout.
1690                         start_retransmit_timer(c);
1691                 }
1692         }
1693
1694         // 4. Update timers
1695
1696         if(advanced) {
1697                 if(c->snd.una == c->snd.last) {
1698                         stop_retransmit_timer(c);
1699                         timespec_clear(&c->conn_timeout);
1700                 } else if(is_reliable(c)) {
1701                         start_retransmit_timer(c);
1702                         clock_gettime(UTCP_CLOCK, &c->conn_timeout);
1703                         c->conn_timeout.tv_sec += utcp->timeout;
1704                 }
1705         }
1706
1707 skip_ack:
1708         // 5. Process SYN stuff
1709
1710         if(hdr.ctl & SYN) {
1711                 switch(c->state) {
1712                 case SYN_SENT:
1713
1714                         // This is a SYNACK. It should always have ACKed the SYN.
1715                         if(!advanced) {
1716                                 goto reset;
1717                         }
1718
1719                         c->rcv.irs = hdr.seq;
1720                         c->rcv.nxt = hdr.seq;
1721
1722                         if(c->shut_wr) {
1723                                 c->snd.last++;
1724                                 set_state(c, FIN_WAIT_1);
1725                         } else {
1726                                 set_state(c, ESTABLISHED);
1727                         }
1728
1729                         // TODO: notify application of this somehow.
1730                         break;
1731
1732                 case SYN_RECEIVED:
1733                         // This is a retransmit of a SYN, send back the SYNACK.
1734                         goto synack;
1735
1736                 case ESTABLISHED:
1737                 case FIN_WAIT_1:
1738                 case FIN_WAIT_2:
1739                 case CLOSE_WAIT:
1740                 case CLOSING:
1741                 case LAST_ACK:
1742                 case TIME_WAIT:
1743                         // Ehm, no. We should never receive a second SYN.
1744                         return 0;
1745
1746                 default:
1747 #ifdef UTCP_DEBUG
1748                         abort();
1749 #endif
1750                         return 0;
1751                 }
1752
1753                 // SYN counts as one sequence number
1754                 c->rcv.nxt++;
1755         }
1756
1757         // 6. Process new data
1758
1759         if(c->state == SYN_RECEIVED) {
1760                 // This is the ACK after the SYNACK. It should always have ACKed the SYNACK.
1761                 if(!advanced) {
1762                         goto reset;
1763                 }
1764
1765                 // Are we still LISTENing?
1766                 if(utcp->accept) {
1767                         utcp->accept(c, c->src);
1768                 }
1769
1770                 if(c->state != ESTABLISHED) {
1771                         set_state(c, CLOSED);
1772                         c->reapable = true;
1773                         goto reset;
1774                 }
1775         }
1776
1777         if(len) {
1778                 switch(c->state) {
1779                 case SYN_SENT:
1780                 case SYN_RECEIVED:
1781                         // This should never happen.
1782 #ifdef UTCP_DEBUG
1783                         abort();
1784 #endif
1785                         return 0;
1786
1787                 case ESTABLISHED:
1788                 case FIN_WAIT_1:
1789                 case FIN_WAIT_2:
1790                         break;
1791
1792                 case CLOSE_WAIT:
1793                 case CLOSING:
1794                 case LAST_ACK:
1795                 case TIME_WAIT:
1796                         // Ehm no, We should never receive more data after a FIN.
1797                         goto reset;
1798
1799                 default:
1800 #ifdef UTCP_DEBUG
1801                         abort();
1802 #endif
1803                         return 0;
1804                 }
1805
1806                 handle_incoming_data(c, &hdr, ptr, len);
1807         }
1808
1809         // 7. Process FIN stuff
1810
1811         if((hdr.ctl & FIN) && (!is_reliable(c) || hdr.seq + len == c->rcv.nxt)) {
1812                 switch(c->state) {
1813                 case SYN_SENT:
1814                 case SYN_RECEIVED:
1815                         // This should never happen.
1816 #ifdef UTCP_DEBUG
1817                         abort();
1818 #endif
1819                         break;
1820
1821                 case ESTABLISHED:
1822                         set_state(c, CLOSE_WAIT);
1823                         break;
1824
1825                 case FIN_WAIT_1:
1826                         set_state(c, CLOSING);
1827                         break;
1828
1829                 case FIN_WAIT_2:
1830                         clock_gettime(UTCP_CLOCK, &c->conn_timeout);
1831                         c->conn_timeout.tv_sec += utcp->timeout;
1832                         set_state(c, TIME_WAIT);
1833                         break;
1834
1835                 case CLOSE_WAIT:
1836                 case CLOSING:
1837                 case LAST_ACK:
1838                 case TIME_WAIT:
1839                         // Ehm, no. We should never receive a second FIN.
1840                         goto reset;
1841
1842                 default:
1843 #ifdef UTCP_DEBUG
1844                         abort();
1845 #endif
1846                         break;
1847                 }
1848
1849                 // FIN counts as one sequence number
1850                 c->rcv.nxt++;
1851                 len++;
1852
1853                 // Inform the application that the peer closed its end of the connection.
1854                 if(c->recv) {
1855                         errno = 0;
1856                         c->recv(c, NULL, 0);
1857                 }
1858         }
1859
1860         // Now we send something back if:
1861         // - we received data, so we have to send back an ACK
1862         //   -> sendatleastone = true
1863         // - or we got an ack, so we should maybe send a bit more data
1864         //   -> sendatleastone = false
1865
1866         if(is_reliable(c) || hdr.ctl & SYN || hdr.ctl & FIN) {
1867                 ack(c, has_data);
1868         }
1869
1870         return 0;
1871
1872 reset:
1873         swap_ports(&hdr);
1874         hdr.wnd = 0;
1875         hdr.aux = 0;
1876
1877         if(hdr.ctl & ACK) {
1878                 hdr.seq = hdr.ack;
1879                 hdr.ctl = RST;
1880         } else {
1881                 hdr.ack = hdr.seq + len;
1882                 hdr.seq = 0;
1883                 hdr.ctl = RST | ACK;
1884         }
1885
1886         print_packet(c, "send", &hdr, sizeof(hdr));
1887         utcp->send(utcp, &hdr, sizeof(hdr));
1888         return 0;
1889
1890 }
1891
1892 int utcp_shutdown(struct utcp_connection *c, int dir) {
1893         debug(c, "shutdown %d at %u\n", dir, c ? c->snd.last : 0);
1894
1895         if(!c) {
1896                 errno = EFAULT;
1897                 return -1;
1898         }
1899
1900         if(c->reapable) {
1901                 debug(c, "shutdown() called on closed connection\n");
1902                 errno = EBADF;
1903                 return -1;
1904         }
1905
1906         if(!(dir == UTCP_SHUT_RD || dir == UTCP_SHUT_WR || dir == UTCP_SHUT_RDWR)) {
1907                 errno = EINVAL;
1908                 return -1;
1909         }
1910
1911         // TCP does not have a provision for stopping incoming packets.
1912         // The best we can do is to just ignore them.
1913         if(dir == UTCP_SHUT_RD || dir == UTCP_SHUT_RDWR) {
1914                 c->recv = NULL;
1915         }
1916
1917         // The rest of the code deals with shutting down writes.
1918         if(dir == UTCP_SHUT_RD) {
1919                 return 0;
1920         }
1921
1922         // Only process shutting down writes once.
1923         if(c->shut_wr) {
1924                 return 0;
1925         }
1926
1927         c->shut_wr = true;
1928
1929         switch(c->state) {
1930         case CLOSED:
1931         case LISTEN:
1932                 errno = ENOTCONN;
1933                 return -1;
1934
1935         case SYN_SENT:
1936                 return 0;
1937
1938         case SYN_RECEIVED:
1939         case ESTABLISHED:
1940                 set_state(c, FIN_WAIT_1);
1941                 break;
1942
1943         case FIN_WAIT_1:
1944         case FIN_WAIT_2:
1945                 return 0;
1946
1947         case CLOSE_WAIT:
1948                 set_state(c, CLOSING);
1949                 break;
1950
1951         case CLOSING:
1952         case LAST_ACK:
1953         case TIME_WAIT:
1954                 return 0;
1955         }
1956
1957         c->snd.last++;
1958
1959         ack(c, false);
1960
1961         if(!timespec_isset(&c->rtrx_timeout)) {
1962                 start_retransmit_timer(c);
1963         }
1964
1965         return 0;
1966 }
1967
1968 static bool reset_connection(struct utcp_connection *c) {
1969         if(!c) {
1970                 errno = EFAULT;
1971                 return false;
1972         }
1973
1974         if(c->reapable) {
1975                 debug(c, "abort() called on closed connection\n");
1976                 errno = EBADF;
1977                 return false;
1978         }
1979
1980         c->recv = NULL;
1981         c->poll = NULL;
1982
1983         switch(c->state) {
1984         case CLOSED:
1985                 return true;
1986
1987         case LISTEN:
1988         case SYN_SENT:
1989         case CLOSING:
1990         case LAST_ACK:
1991         case TIME_WAIT:
1992                 set_state(c, CLOSED);
1993                 return true;
1994
1995         case SYN_RECEIVED:
1996         case ESTABLISHED:
1997         case FIN_WAIT_1:
1998         case FIN_WAIT_2:
1999         case CLOSE_WAIT:
2000                 set_state(c, CLOSED);
2001                 break;
2002         }
2003
2004         // Send RST
2005
2006         struct hdr hdr;
2007
2008         hdr.src = c->src;
2009         hdr.dst = c->dst;
2010         hdr.seq = c->snd.nxt;
2011         hdr.ack = 0;
2012         hdr.wnd = 0;
2013         hdr.ctl = RST;
2014
2015         print_packet(c, "send", &hdr, sizeof(hdr));
2016         c->utcp->send(c->utcp, &hdr, sizeof(hdr));
2017         return true;
2018 }
2019
2020 // Closes all the opened connections
2021 void utcp_abort_all_connections(struct utcp *utcp) {
2022         if(!utcp) {
2023                 errno = EINVAL;
2024                 return;
2025         }
2026
2027         for(int i = 0; i < utcp->nconnections; i++) {
2028                 struct utcp_connection *c = utcp->connections[i];
2029
2030                 if(c->reapable || c->state == CLOSED) {
2031                         continue;
2032                 }
2033
2034                 utcp_recv_t old_recv = c->recv;
2035                 utcp_poll_t old_poll = c->poll;
2036
2037                 reset_connection(c);
2038
2039                 if(old_recv) {
2040                         errno = 0;
2041                         old_recv(c, NULL, 0);
2042                 }
2043
2044                 if(old_poll && !c->reapable) {
2045                         errno = 0;
2046                         old_poll(c, 0);
2047                 }
2048         }
2049
2050         return;
2051 }
2052
2053 int utcp_close(struct utcp_connection *c) {
2054         if(utcp_shutdown(c, SHUT_RDWR) && errno != ENOTCONN) {
2055                 return -1;
2056         }
2057
2058         c->recv = NULL;
2059         c->poll = NULL;
2060         c->reapable = true;
2061         return 0;
2062 }
2063
2064 int utcp_abort(struct utcp_connection *c) {
2065         if(!reset_connection(c)) {
2066                 return -1;
2067         }
2068
2069         c->reapable = true;
2070         return 0;
2071 }
2072
2073 /* Handle timeouts.
2074  * One call to this function will loop through all connections,
2075  * checking if something needs to be resent or not.
2076  * The return value is the time to the next timeout in milliseconds,
2077  * or maybe a negative value if the timeout is infinite.
2078  */
2079 struct timespec utcp_timeout(struct utcp *utcp) {
2080         struct timespec now;
2081         clock_gettime(UTCP_CLOCK, &now);
2082         struct timespec next = {now.tv_sec + 3600, now.tv_nsec};
2083
2084         for(int i = 0; i < utcp->nconnections; i++) {
2085                 struct utcp_connection *c = utcp->connections[i];
2086
2087                 if(!c) {
2088                         continue;
2089                 }
2090
2091                 // delete connections that have been utcp_close()d.
2092                 if(c->state == CLOSED) {
2093                         if(c->reapable) {
2094                                 debug(c, "reaping\n");
2095                                 free_connection(c);
2096                                 i--;
2097                         }
2098
2099                         continue;
2100                 }
2101
2102                 if(timespec_isset(&c->conn_timeout) && timespec_lt(&c->conn_timeout, &now)) {
2103                         errno = ETIMEDOUT;
2104                         c->state = CLOSED;
2105
2106                         if(c->recv) {
2107                                 c->recv(c, NULL, 0);
2108                         }
2109
2110                         if(c->poll && !c->reapable) {
2111                                 c->poll(c, 0);
2112                         }
2113
2114                         continue;
2115                 }
2116
2117                 if(timespec_isset(&c->rtrx_timeout) && timespec_lt(&c->rtrx_timeout, &now)) {
2118                         debug(c, "retransmitting after timeout\n");
2119                         retransmit(c);
2120                 }
2121
2122                 if(c->poll) {
2123                         if((c->state == ESTABLISHED || c->state == CLOSE_WAIT) && c->do_poll) {
2124                                 c->do_poll = false;
2125                                 uint32_t len = buffer_free(&c->sndbuf);
2126
2127                                 if(len) {
2128                                         c->poll(c, len);
2129                                 }
2130                         } else if(c->state == CLOSED) {
2131                                 c->poll(c, 0);
2132                         }
2133                 }
2134
2135                 if(timespec_isset(&c->conn_timeout) && timespec_lt(&c->conn_timeout, &next)) {
2136                         next = c->conn_timeout;
2137                 }
2138
2139                 if(timespec_isset(&c->rtrx_timeout) && timespec_lt(&c->rtrx_timeout, &next)) {
2140                         next = c->rtrx_timeout;
2141                 }
2142         }
2143
2144         struct timespec diff;
2145
2146         timespec_sub(&next, &now, &diff);
2147
2148         return diff;
2149 }
2150
2151 bool utcp_is_active(struct utcp *utcp) {
2152         if(!utcp) {
2153                 return false;
2154         }
2155
2156         for(int i = 0; i < utcp->nconnections; i++)
2157                 if(utcp->connections[i]->state != CLOSED && utcp->connections[i]->state != TIME_WAIT) {
2158                         return true;
2159                 }
2160
2161         return false;
2162 }
2163
2164 struct utcp *utcp_init(utcp_accept_t accept, utcp_pre_accept_t pre_accept, utcp_send_t send, void *priv) {
2165         if(!send) {
2166                 errno = EFAULT;
2167                 return NULL;
2168         }
2169
2170         struct utcp *utcp = calloc(1, sizeof(*utcp));
2171
2172         if(!utcp) {
2173                 return NULL;
2174         }
2175
2176         if(!CLOCK_GRANULARITY) {
2177                 struct timespec res;
2178                 clock_getres(UTCP_CLOCK, &res);
2179                 CLOCK_GRANULARITY = res.tv_sec * USEC_PER_SEC + res.tv_nsec / 1000;
2180         }
2181
2182         utcp->accept = accept;
2183         utcp->pre_accept = pre_accept;
2184         utcp->send = send;
2185         utcp->priv = priv;
2186         utcp_set_mtu(utcp, DEFAULT_MTU);
2187         utcp->timeout = DEFAULT_USER_TIMEOUT; // sec
2188
2189         return utcp;
2190 }
2191
2192 void utcp_exit(struct utcp *utcp) {
2193         if(!utcp) {
2194                 return;
2195         }
2196
2197         for(int i = 0; i < utcp->nconnections; i++) {
2198                 struct utcp_connection *c = utcp->connections[i];
2199
2200                 if(!c->reapable) {
2201                         if(c->recv) {
2202                                 c->recv(c, NULL, 0);
2203                         }
2204
2205                         if(c->poll && !c->reapable) {
2206                                 c->poll(c, 0);
2207                         }
2208                 }
2209
2210                 buffer_exit(&c->rcvbuf);
2211                 buffer_exit(&c->sndbuf);
2212                 free(c);
2213         }
2214
2215         free(utcp->connections);
2216         free(utcp->pkt);
2217         free(utcp);
2218 }
2219
2220 uint16_t utcp_get_mtu(struct utcp *utcp) {
2221         return utcp ? utcp->mtu : 0;
2222 }
2223
2224 uint16_t utcp_get_mss(struct utcp *utcp) {
2225         return utcp ? utcp->mss : 0;
2226 }
2227
2228 void utcp_set_mtu(struct utcp *utcp, uint16_t mtu) {
2229         if(!utcp) {
2230                 return;
2231         }
2232
2233         if(mtu <= sizeof(struct hdr)) {
2234                 return;
2235         }
2236
2237         if(mtu > utcp->mtu) {
2238                 char *new = realloc(utcp->pkt, mtu + sizeof(struct hdr));
2239
2240                 if(!new) {
2241                         return;
2242                 }
2243
2244                 utcp->pkt = new;
2245         }
2246
2247         utcp->mtu = mtu;
2248         utcp->mss = mtu - sizeof(struct hdr);
2249 }
2250
2251 void utcp_reset_timers(struct utcp *utcp) {
2252         if(!utcp) {
2253                 return;
2254         }
2255
2256         struct timespec now, then;
2257
2258         clock_gettime(UTCP_CLOCK, &now);
2259
2260         then = now;
2261
2262         then.tv_sec += utcp->timeout;
2263
2264         for(int i = 0; i < utcp->nconnections; i++) {
2265                 struct utcp_connection *c = utcp->connections[i];
2266
2267                 if(c->reapable) {
2268                         continue;
2269                 }
2270
2271                 if(timespec_isset(&c->rtrx_timeout)) {
2272                         c->rtrx_timeout = now;
2273                 }
2274
2275                 if(timespec_isset(&c->conn_timeout)) {
2276                         c->conn_timeout = then;
2277                 }
2278
2279                 c->rtt_start.tv_sec = 0;
2280
2281                 if(c->rto > START_RTO) {
2282                         c->rto = START_RTO;
2283                 }
2284         }
2285 }
2286
2287 int utcp_get_user_timeout(struct utcp *u) {
2288         return u ? u->timeout : 0;
2289 }
2290
2291 void utcp_set_user_timeout(struct utcp *u, int timeout) {
2292         if(u) {
2293                 u->timeout = timeout;
2294         }
2295 }
2296
2297 size_t utcp_get_sndbuf(struct utcp_connection *c) {
2298         return c ? c->sndbuf.maxsize : 0;
2299 }
2300
2301 size_t utcp_get_sndbuf_free(struct utcp_connection *c) {
2302         if(!c) {
2303                 return 0;
2304         }
2305
2306         switch(c->state) {
2307         case SYN_SENT:
2308         case SYN_RECEIVED:
2309         case ESTABLISHED:
2310         case CLOSE_WAIT:
2311                 return buffer_free(&c->sndbuf);
2312
2313         default:
2314                 return 0;
2315         }
2316 }
2317
2318 void utcp_set_sndbuf(struct utcp_connection *c, size_t size) {
2319         if(!c) {
2320                 return;
2321         }
2322
2323         c->sndbuf.maxsize = size;
2324
2325         if(c->sndbuf.maxsize != size) {
2326                 c->sndbuf.maxsize = -1;
2327         }
2328
2329         c->do_poll = is_reliable(c) && buffer_free(&c->sndbuf);
2330 }
2331
2332 size_t utcp_get_rcvbuf(struct utcp_connection *c) {
2333         return c ? c->rcvbuf.maxsize : 0;
2334 }
2335
2336 size_t utcp_get_rcvbuf_free(struct utcp_connection *c) {
2337         if(c && (c->state == ESTABLISHED || c->state == CLOSE_WAIT)) {
2338                 return buffer_free(&c->rcvbuf);
2339         } else {
2340                 return 0;
2341         }
2342 }
2343
2344 void utcp_set_rcvbuf(struct utcp_connection *c, size_t size) {
2345         if(!c) {
2346                 return;
2347         }
2348
2349         c->rcvbuf.maxsize = size;
2350
2351         if(c->rcvbuf.maxsize != size) {
2352                 c->rcvbuf.maxsize = -1;
2353         }
2354 }
2355
2356 size_t utcp_get_sendq(struct utcp_connection *c) {
2357         return c->sndbuf.used;
2358 }
2359
2360 size_t utcp_get_recvq(struct utcp_connection *c) {
2361         return c->rcvbuf.used;
2362 }
2363
2364 bool utcp_get_nodelay(struct utcp_connection *c) {
2365         return c ? c->nodelay : false;
2366 }
2367
2368 void utcp_set_nodelay(struct utcp_connection *c, bool nodelay) {
2369         if(c) {
2370                 c->nodelay = nodelay;
2371         }
2372 }
2373
2374 bool utcp_get_keepalive(struct utcp_connection *c) {
2375         return c ? c->keepalive : false;
2376 }
2377
2378 void utcp_set_keepalive(struct utcp_connection *c, bool keepalive) {
2379         if(c) {
2380                 c->keepalive = keepalive;
2381         }
2382 }
2383
2384 size_t utcp_get_outq(struct utcp_connection *c) {
2385         return c ? seqdiff(c->snd.nxt, c->snd.una) : 0;
2386 }
2387
2388 void utcp_set_recv_cb(struct utcp_connection *c, utcp_recv_t recv) {
2389         if(c) {
2390                 c->recv = recv;
2391         }
2392 }
2393
2394 void utcp_set_poll_cb(struct utcp_connection *c, utcp_poll_t poll) {
2395         if(c) {
2396                 c->poll = poll;
2397                 c->do_poll = is_reliable(c) && buffer_free(&c->sndbuf);
2398         }
2399 }
2400
2401 void utcp_set_accept_cb(struct utcp *utcp, utcp_accept_t accept, utcp_pre_accept_t pre_accept) {
2402         if(utcp) {
2403                 utcp->accept = accept;
2404                 utcp->pre_accept = pre_accept;
2405         }
2406 }
2407
2408 void utcp_expect_data(struct utcp_connection *c, bool expect) {
2409         if(!c || c->reapable) {
2410                 return;
2411         }
2412
2413         if(!(c->state == ESTABLISHED || c->state == FIN_WAIT_1 || c->state == FIN_WAIT_2)) {
2414                 return;
2415         }
2416
2417         if(expect) {
2418                 // If we expect data, start the connection timer.
2419                 if(!timespec_isset(&c->conn_timeout)) {
2420                         clock_gettime(UTCP_CLOCK, &c->conn_timeout);
2421                         c->conn_timeout.tv_sec += c->utcp->timeout;
2422                 }
2423         } else {
2424                 // If we want to cancel expecting data, only clear the timer when there is no unACKed data.
2425                 if(c->snd.una == c->snd.last) {
2426                         timespec_clear(&c->conn_timeout);
2427                 }
2428         }
2429 }
2430
2431 void utcp_offline(struct utcp *utcp, bool offline) {
2432         struct timespec now;
2433         clock_gettime(UTCP_CLOCK, &now);
2434
2435         for(int i = 0; i < utcp->nconnections; i++) {
2436                 struct utcp_connection *c = utcp->connections[i];
2437
2438                 if(c->reapable) {
2439                         continue;
2440                 }
2441
2442                 utcp_expect_data(c, offline);
2443
2444                 if(!offline) {
2445                         if(timespec_isset(&c->rtrx_timeout)) {
2446                                 c->rtrx_timeout = now;
2447                         }
2448
2449                         utcp->connections[i]->rtt_start.tv_sec = 0;
2450
2451                         if(c->rto > START_RTO) {
2452                                 c->rto = START_RTO;
2453                         }
2454                 }
2455         }
2456 }
2457
2458 void utcp_set_clock_granularity(long granularity) {
2459         CLOCK_GRANULARITY = granularity;
2460 }