]> git.meshlink.io Git - meshlink/blob - src/graph.c
a3fe0ce552134a8fa5e9baaabd8f688b79fb3048
[meshlink] / src / graph.c
1 /*
2     graph.c -- graph algorithms
3     Copyright (C) 2001-2004 Guus Sliepen <guus@tinc-vpn.org>,
4                   2001-2004 Ivo Timmermans <ivo@tinc-vpn.org>
5
6     This program is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 2 of the License, or
9     (at your option) any later version.
10
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15
16     You should have received a copy of the GNU General Public License
17     along with this program; if not, write to the Free Software
18     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20     $Id$
21 */
22
23 /* We need to generate two trees from the graph:
24
25    1. A minimum spanning tree for broadcasts,
26    2. A single-source shortest path tree for unicasts.
27
28    Actually, the first one alone would suffice but would make unicast packets
29    take longer routes than necessary.
30
31    For the MST algorithm we can choose from Prim's or Kruskal's. I personally
32    favour Kruskal's, because we make an extra AVL tree of edges sorted on
33    weights (metric). That tree only has to be updated when an edge is added or
34    removed, and during the MST algorithm we just have go linearly through that
35    tree, adding safe edges until #edges = #nodes - 1. The implementation here
36    however is not so fast, because I tried to avoid having to make a forest and
37    merge trees.
38
39    For the SSSP algorithm Dijkstra's seems to be a nice choice. Currently a
40    simple breadth-first search is presented here.
41
42    The SSSP algorithm will also be used to determine whether nodes are directly,
43    indirectly or not reachable from the source. It will also set the correct
44    destination address and port of a node if possible.
45 */
46
47 #include "system.h"
48
49 #include "avl_tree.h"
50 #include "connection.h"
51 #include "device.h"
52 #include "edge.h"
53 #include "logger.h"
54 #include "netutl.h"
55 #include "node.h"
56 #include "process.h"
57 #include "subnet.h"
58 #include "utils.h"
59
60 /* Implementation of Kruskal's algorithm.
61    Running time: O(EN)
62    Please note that sorting on weight is already done by add_edge().
63 */
64
65 void mst_kruskal(void)
66 {
67         avl_node_t *node, *next;
68         edge_t *e;
69         node_t *n;
70         connection_t *c;
71         int nodes = 0;
72         int safe_edges = 0;
73         bool skipped;
74
75         cp();
76         
77         /* Clear MST status on connections */
78
79         for(node = connection_tree->head; node; node = node->next) {
80                 c = node->data;
81                 c->status.mst = false;
82         }
83
84         /* Do we have something to do at all? */
85
86         if(!edge_weight_tree->head)
87                 return;
88
89         ifdebug(SCARY_THINGS) logger(LOG_DEBUG, "Running Kruskal's algorithm:");
90
91         /* Clear visited status on nodes */
92
93         for(node = node_tree->head; node; node = node->next) {
94                 n = node->data;
95                 n->status.visited = false;
96                 nodes++;
97         }
98
99         /* Starting point */
100
101         ((edge_t *) edge_weight_tree->head->data)->from->status.visited = true;
102
103         /* Add safe edges */
104
105         for(skipped = false, node = edge_weight_tree->head; node; node = next) {
106                 next = node->next;
107                 e = node->data;
108
109                 if(!e->reverse || e->from->status.visited == e->to->status.visited) {
110                         skipped = true;
111                         continue;
112                 }
113
114                 e->from->status.visited = true;
115                 e->to->status.visited = true;
116
117                 if(e->connection)
118                         e->connection->status.mst = true;
119
120                 if(e->reverse->connection)
121                         e->reverse->connection->status.mst = true;
122
123                 safe_edges++;
124
125                 ifdebug(SCARY_THINGS) logger(LOG_DEBUG, " Adding edge %s - %s weight %d", e->from->name,
126                                    e->to->name, e->weight);
127
128                 if(skipped) {
129                         skipped = false;
130                         next = edge_weight_tree->head;
131                         continue;
132                 }
133         }
134
135         ifdebug(SCARY_THINGS) logger(LOG_DEBUG, "Done, counted %d nodes and %d safe edges.", nodes,
136                            safe_edges);
137 }
138
139 /* Implementation of a simple breadth-first search algorithm.
140    Running time: O(E)
141 */
142
143 void sssp_bfs(void)
144 {
145         avl_node_t *node, *next, *to;
146         edge_t *e;
147         node_t *n;
148         list_t *todo_list;
149         list_node_t *from, *todonext;
150         bool indirect;
151         char *name;
152         char *address, *port;
153         char *envp[7];
154         int i;
155
156         cp();
157
158         todo_list = list_alloc(NULL);
159
160         /* Clear visited status on nodes */
161
162         for(node = node_tree->head; node; node = node->next) {
163                 n = node->data;
164                 n->status.visited = false;
165                 n->status.indirect = true;
166         }
167
168         /* Begin with myself */
169
170         myself->status.visited = true;
171         myself->status.indirect = false;
172         myself->nexthop = myself;
173         myself->via = myself;
174         list_insert_head(todo_list, myself);
175
176         /* Loop while todo_list is filled */
177
178         for(from = todo_list->head; from; from = todonext) {    /* "from" is the node from which we start */
179                 n = from->data;
180
181                 for(to = n->edge_tree->head; to; to = to->next) {       /* "to" is the edge connected to "from" */
182                         e = to->data;
183
184                         if(!e->reverse)
185                                 continue;
186
187                         /* Situation:
188
189                                    /
190                                   /
191                            ----->(n)---e-->(e->to)
192                                   \
193                                    \
194
195                            Where e is an edge, (n) and (e->to) are nodes.
196                            n->address is set to the e->address of the edge left of n to n.
197                            We are currently examining the edge e right of n from n:
198
199                            - If e->reverse->address != n->address, then e->to is probably
200                              not reachable for the nodes left of n. We do as if the indirectdata
201                              flag is set on edge e.
202                            - If edge e provides for better reachability of e->to, update
203                              e->to and (re)add it to the todo_list to (re)examine the reachability
204                              of nodes behind it.
205                          */
206
207                         indirect = n->status.indirect || e->options & OPTION_INDIRECT
208                                 || ((n != myself) && sockaddrcmp(&n->address, &e->reverse->address));
209
210                         if(e->to->status.visited
211                            && (!e->to->status.indirect || indirect))
212                                 continue;
213
214                         e->to->status.visited = true;
215                         e->to->status.indirect = indirect;
216                         e->to->nexthop = (n->nexthop == myself) ? e->to : n->nexthop;
217                         e->to->via = indirect ? n->via : e->to;
218                         e->to->options = e->options;
219
220                         if(sockaddrcmp(&e->to->address, &e->address)) {
221                                 node = avl_unlink(node_udp_tree, e->to);
222                                 sockaddrfree(&e->to->address);
223                                 sockaddrcpy(&e->to->address, &e->address);
224
225                                 if(e->to->hostname)
226                                         free(e->to->hostname);
227
228                                 e->to->hostname = sockaddr2hostname(&e->to->address);
229                                 avl_insert_node(node_udp_tree, node);
230
231                                 if(e->to->options & OPTION_PMTU_DISCOVERY) {
232                                         e->to->mtuprobes = 0;
233                                         e->to->minmtu = 0;
234                                         e->to->maxmtu = MTU;
235                                         if(e->to->status.validkey)
236                                                 send_mtu_probe(e->to);
237                                 }
238                         }
239
240                         list_insert_tail(todo_list, e->to);
241                 }
242
243                 todonext = from->next;
244                 list_delete_node(todo_list, from);
245         }
246
247         list_free(todo_list);
248
249         /* Check reachability status. */
250
251         for(node = node_tree->head; node; node = next) {
252                 next = node->next;
253                 n = node->data;
254
255                 if(n->status.visited != n->status.reachable) {
256                         n->status.reachable = !n->status.reachable;
257
258                         if(n->status.reachable) {
259                                 ifdebug(TRAFFIC) logger(LOG_DEBUG, _("Node %s (%s) became reachable"),
260                                            n->name, n->hostname);
261                         } else {
262                                 ifdebug(TRAFFIC) logger(LOG_DEBUG, _("Node %s (%s) became unreachable"),
263                                            n->name, n->hostname);
264                         }
265
266                         n->status.validkey = false;
267                         n->status.waitingforkey = false;
268
269                         n->maxmtu = MTU;
270                         n->minmtu = 0;
271                         n->mtuprobes = 0;
272
273                         asprintf(&envp[0], "NETNAME=%s", netname ? : "");
274                         asprintf(&envp[1], "DEVICE=%s", device ? : "");
275                         asprintf(&envp[2], "INTERFACE=%s", iface ? : "");
276                         asprintf(&envp[3], "NODE=%s", n->name);
277                         sockaddr2str(&n->address, &address, &port);
278                         asprintf(&envp[4], "REMOTEADDRESS=%s", address);
279                         asprintf(&envp[5], "REMOTEPORT=%s", port);
280                         envp[6] = NULL;
281
282                         asprintf(&name,
283                                          n->status.reachable ? "hosts/%s-up" : "hosts/%s-down",
284                                          n->name);
285                         execute_script(name, envp);
286
287                         free(name);
288                         free(address);
289                         free(port);
290
291                         for(i = 0; i < 6; i++)
292                                 free(envp[i]);
293
294                         subnet_update(n, NULL, n->status.reachable);
295                 }
296         }
297 }
298
299 void graph(void)
300 {
301         mst_kruskal();
302         sssp_bfs();
303 }